skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Janzen, Eli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. van der Waals materials support numerous exotic polaritonic phenomena originating from their layered structures and associated vibrational and electronic properties. However, many van der Waals materials' unique properties are most prominent at cryogenic temperatures. This presents a particular challenge for polaritonics research, as reliable optical constant data are required for understanding light-matter coupling. This paper presents a cryogenic Fourier transform infrared microscope design constructed entirely from off-the-shelf components and associated fitting procedures for determining optical constants in the infrared. Data correction techniques were developed to directly quantify systematic errors in the fitting procedure. We use this microscope to present the first temperature-dependent characterization of the optical properties of hexagonal boron nitride enriched with isotopically pure boron. Our full analysis of the infrared dielectric function shows small but significant tuning of the optical constants, which is highly consistent with Raman data from the literature. We then use this dielectric data to perform and analyze the polariton propagation properties, which agree exceptionally well with published cryogenic scattering-type near-field microscopy results. In addition to the insights gained into hyperbolic polaritons in hBN, our paper represents a transferable framework for characterizing exfoliated infrared polaritonic materials and other infrared devices. This could accelerate discoveries in different material systems, especially those that are spatially inhomogeneous or cannot be prepared as large single crystals. 
    more » « less
    Free, publicly-accessible full text available January 6, 2026
  2. For decades, infrared (IR) spectroscopy has advanced on two distinct frontiers: enhancing spatial resolution and broadening spectroscopic information. Although atomic force microscopy (AFM)-based IR microscopy overcomes Abbe’s diffraction limit and reaches sub-10 nm spatial resolutions, time-domain two-dimensional IR spectroscopy (2DIR) provides insights into molecular structures, mode coupling and energy transfers. Here we bridge the boundary between these two techniques and develop AFM-2DIR nanospectroscopy. Our method offers the spatial precision of AFM in combination with the rich spectroscopic information provided by 2DIR. This approach mechanically detects the sample’s photothermal responses to a tip-enhanced femtosecond IR pulse sequence and extracts spatially resolved spectroscopic information via FFTs. In a proof-of-principle experiment, we elucidate the anharmonicity of a carbonyl vibrational mode. Further, leveraging the near-field photons’ high momenta from the tip enhancement for phase matching, we photothermally probe hyperbolic phonon polaritons in isotope-enriched h10BN. Our measurements unveil an energy transfer between phonon polaritons and phonons, as well as among different polariton modes, possibly aided by scattering at interfaces. The AFM-2DIR nanospectroscopy enables the in situ investigations of vibrational anharmonicity, coupling and energy transfers in heterogeneous materials and nanostructures, especially suitable for unravelling the relaxation process in two-dimensional materials at IR frequencies. 
    more » « less
  3. Abstract Spin defects in van der Waals materials offer a promising platform for advancing quantum technologies. Here, we propose and demonstrate a powerful technique based on isotope engineering of host materials to significantly enhance the coherence properties of embedded spin defects. Focusing on the recently-discovered negatively charged boron vacancy center ($${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ V B ) in hexagonal boron nitride (hBN), we grow isotopically purified h10B15N crystals. Compared to$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ V B in hBN with the natural distribution of isotopes, we observe substantially narrower and less crowded$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ V B spin transitions as well as extended coherence timeT2and relaxation timeT1. For quantum sensing,$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ V B centers in our h10B15N samples exhibit a factor of 4 (2) enhancement in DC (AC) magnetic field sensitivity. For additional quantum resources, the individual addressability of the$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ V B hyperfine levels enables the dynamical polarization and coherent control of the three nearest-neighbor15N nuclear spins. Our results demonstrate the power of isotope engineering for enhancing the properties of quantum spin defects in hBN, and can be readily extended to improving spin qubits in a broad family of van der Waals materials. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract Phonon polaritons, the hybrid quasiparticles resulting from the coupling of photons and lattice vibrations, have gained significant attention in the field of layered van der Waals heterostructures. Particular interest has been paid to hetero‐bicrystals composed of molybdenum oxide (MoO3) and hexagonal boron nitride (hBN), which feature polariton dispersion tailorable via avoided polariton mode crossings. In this work, the polariton eigenmodes in MoO3‐hBN hetero‐bicrystals self‐assembled on ultrasmooth gold are systematically studied using synchrotron infrared nanospectroscopy. It is experimentally demonstrated that the spectral gap in bicrystal dispersion and corresponding regimes of negative refraction can be tuned by material layer thickness, and these results are quantitatively matched with a simple analytic model. Polaritonic cavity modes and polariton propagation along “forbidden” directions are also investigated in microscale bicrystals, which arise from the finite in‐plane dimension of the synthesized MoO3micro‐ribbons. The findings shed light on the unique dispersion properties of polaritons in van der Waals heterostructures and pave the way for applications leveraging deeply sub‐wavelength mid‐infrared light‐matter interactions. 
    more » « less
  7. Abstract Wavelength‐selective absorbers (WS‐absorbers) are of interest for various applications, including chemical sensing and light sources. Lithography‐free fabrication of WS‐absorbers can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors (DBRs) on plasmonic materials. While multifrequency and nearly arbitrary spectra can be realized with TPPs via inverse design algorithms, demanding and thick DBRs are required for high quality‐factors (Q‐factors) and/or multiband TPP‐absorbers, increasing the cost and reducing fabrication error tolerance. Here, high Q‐factor multiband absorption with limited DBR layers (3 layers) is experimentally demonstrated by Tamm hybrid polaritons (THPs) formed by coupling TPPs and Tamm phonon polaritons when modal frequencies are overlapped. Compared to the TPP component, the Q‐factors of THPs are improved twofold, and the angular broadening is also reduced twofold, facilitating applications where narrow‐band and nondispersive WS‐absorbers are needed. Moreover, an open‐source algorithm is developed to inversely design THP‐absorbers consisting of anisotropic media and exemplify that the modal frequencies can be assigned to desirable positions. Furthermore, it is demonstrated that inversely designed THP‐absorbers can realize same spectral resonances with fewer DBR layers than a TPP‐absorber, thus reducing the fabrication complexity and enabling more cost‐effective, lithography‐free, wafer‐scale WS‐absorberss for applications such as free‐space communications and gas sensing. 
    more » « less